7 Tropical Nevanlinna Theory and Ultra - Discrete Equations

نویسنده

  • N. J. Southall
چکیده

A tropical version of Nevanlinna theory is described in which the role of meromorphic functions is played by continuous piecewise linear functions of a real variable whose one-sided derivatives are integers at every point. These functions are naturally defined on the max-plus (or tropical) semi-ring. Analogues of the Nevanlinna characteristic, proximity and counting functions are defined and versions of Nevanlinna’s first main theorem, the lemma on the logarithmic derivative and Clunie’s lemma are proved. As well as providing another example of a tropical or dequantized analogue of an important area of complex analysis, this theory has applications to so-called ultra-discrete equations. Preliminary results are presented suggesting that the existence of finite-order max-plus meromorphic solutions can be considered to be an ultra-discrete analogue of the Painlevé property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to detect the integrability of discrete systems

Several integrability tests for discrete equations will be reviewed. All tests considered can be applied directly to a given discrete equation and do not rely on the a priori knowledge of the existence of related structures such as Lax pairs. Specifically, singularity confinement, algebraic entropy, Nevanlinna theory, Diophantine integrability and discrete systems over finite fields will be des...

متن کامل

Nevanlinna theory for the difference operator

Certain estimates involving the derivative f 7→ f ′ of a meromorphic function play key roles in the construction and applications of classical Nevanlinna theory. The purpose of this study is to extend the usual Nevanlinna theory to a theory for the exact difference f 7→ ∆f = f(z+ c)− f(z). An a-point of a meromorphic function f is said to be c-paired at z ∈ C if f(z) = a = f(z+c) for a fixed co...

متن کامل

Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations

The Painlevé property is closely connected to differential equations that are integrable via related iso-monodromy problems. Many apparently integrable discrete analogues of the Painlevé equations have appeared in the literature. The existence of sufficiently many finite-order meromorphic solutions appears to be a good analogue of the Painlevé property for discrete equations, in which the indep...

متن کامل

MHF Preprint Series

Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions Abstract. We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable s...

متن کامل

Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differentialdifference equations, difference equations and cellular automata (ultra-discrete equations).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008